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In [3], as an application of two basic theorems on inclusions and lattice
cones of functions, we gave an intrinsic description of the order compactifi-
cations of an ordered topological space in terms of certain quasiproximities.
Of the questions “When does an ordered topological space have a largest,
a smallest, and a (up to equivalence) unique order compactification?” we
answered only the first. These results were announced in [2]. They are
reproduced here in the first section in a form free of the language of quasi-
proximities used in [2] and [3]. In the second section we study the order
compactifications of a totally ordered topological space and answer the
remaining two of the above questions for this special case.

1. ORDERED TOPOLOGICAL SPACES

1.1. DEFINITION.  An ordered topological space is a triple (X, 7, =0)
consisting of a set X, a topology = for X, and an order = for X, ie., a
transitive, reflexive, antisymmetric binary relation << for X, which is closed,
ie., << is a closed subset of X x X when the latter is given the product
topology.

1.2. ProposITION, The topology of an ordered topological space is
Hausdorft.
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ORDER COMPACTIFICATIONS 57
Proof. [6,p. 27].

1.3. DEFINITION. Let X be an ordered topological space (whenever
possible, we shall omit explicit mention of the topology of an ordered
topological space and shall denote the order by <0). An order compactification
of X is a pair (7, «) consisting of a compact ordered topological space Y, i.e.,
an ordered topological space Y whose topology is compact and a mapping
k: X - Y such that

x is a topological embedding,
« is an order embedding, i.e., x(x) << x(y) ilf x <y,
x[X]1s dense in Y.

An order compactification (Y, x) of X is called a Nachbin compactification
if its order is the smallest closed order for Y with respect to which « is an
order embedding.

We define a preorder, i.e., a transitive and reflexive binary relation, < for
the set of all order compactifications of X by agreeing that (Y, , x;) << (Y, , o)
iff there exists a mapping ¢: Y, — Y, such that

@ is continuous,
@ is increasing, i.e., X <X y = @(x) << ¢(p),

@ ° Ky == Ky,

and we call two order compactifications (Y7 , «;) and (Y, , «,) of X equivalent
if there exists a mapping ¢: ¥, — ¥; such that

¢ is a topological isomorphism,
¢ 18 an order isomorphism,

@ oKy = Ky.

It follows from 1.2 that two order compactifications (¥, , «;) and (Y, , x,)
of X are equivalent iff (Y;, x;) << (Y, kp) and (Y, , k) << (Y7, k).

For any set X, we denote by B(X) the space of all bounded real-valued
functions on X equipped with the topology of uniform convergence and
we call a closed lattice cone (of functions) on X any closed convex cone in B(X)
which contains the constant functions and is closed under the lattice oper-
ations. If X is a topological space, BC(X) denotes the closed lattice cone on X
which consists of all continuous members of B(X) and if X is an ordered
topological space, BCI(X) denotes the closed lattice cone on X which consists
of all continuous and increasing members of B(X).
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1.4, DeriNniTioN. Let X be an ordered topological space. We shall call
a closed lattice cone K on X compatible if the topology of X is the smallest
topology for X which renders the members of K continuous and the order of X
is the largest order for X which renders the members of K increasing; it is
easy to see that K is compatible iff

K C BCIKX),
for every x € X and every neighborhood U of x there exists fe K and
ge —Ksuch that 1, << f A g = 1y (= characteristic function of U),

x =L yif (and only if) f(x) = f(y) forall fe K.

We call X a completely regular ordered ropological space if BCHX) is
compatible.

1.5. ORDER COMPACTIFICATION THEOREM. Let X be an ordered topological
space.

(1} X has an order compactification iff it is a completely regular ordered
topological space.
(i) If(Y, k) is an order compactification of X, then{f= «: f€ BCI(Y)} is
a compatible closed lattice cone on X and is called the closed lattice cone
associated with (Y, ).
(1) If K is a compatible closed lattice cone on X, the set Y of all maps
y: K —> R such that

v is additive and R--homogeneous,
y preserves the lattice operations,

y preserves the constants, i.e., for r € R, y(rly) = r, equipped with the
topology of pointwise convergence and with the pointwise order together with
the map w: X — Y defined by

k(xX}f) = flx), feK, Xed,

is a compactification of X whose associated closed lattice cone is K.
(iv) If (Yy, xy) and (Y, , k) are two order compactifications of X with
associated closed lattice cones K| and K, , then

(Y1, xy) <(;Y2,K2) lﬁ K1CK2~

1.6. NACHBIN COMPACTIFICATION THEOREM. Let X be an ordered topo-
logical space, (Y, ) an order compactification of X, and let K be the associated
closed lattice cone.
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(1) The binary relation =Z' for Y defined by x 'y = f(x) =l f(p)
for all e BC(Y) such that fo « e BCI(X) is the smallest closed order for Y
with respect to which «k is an order embedding.

(i) {fow:feBC(Y)) = c(K — K).
(tii) (Y, «) is @ Nachbin compactification iff K = ¢/(K — K) " BCI(X).

1.7. THEOREM. Let X be a completely regular ordered topological space.
Then every nonempty set of order compactifications resp. Nachbin compactifi-
cations of X has a smallest upper bound (unique up to equivalence) in the
preordered set of all order compactifications resp. Nachbin compactifications.
In particular, X has a largest order compactification (unique up to equivalence)
and this order compactification is a Nachbin compactification.

The part of this theorem which concerns Nachbin compactifications was
actually not proved in [3]. It is, however, straightforward to verify that for
any nonempty set of Nachbin compactifications of X a smallest upper bound
in the preordered set of all Nachbin compactifications of X can be con-
structed from a smallest upper bound in the preordered set of all order
compactifications by changing the order of the latter according to 1.6(1).

2. TorALLY ORDERED TOPOLOGICAL SPACES

Let X be a set and let =< be a total order for X, i.e., an order for X such that
forx. ye X, x <% yor y < x. As usual, we define the (=2 —) order 1opology
of X to be the smallest topology for X which contains all sets of the form
{yiy <x(y <xandy < x)} and {y:x <y} for some xe X. It is an
easy exercise to show that this is the smallest topology for X with respect to
which the order is closed in the sense of 1.1, This fact can be stated as follows.

2.1. PrROPOSITION.  The topology of a totally ordered topological space, i.e.,
an ordered topological space whose order is total, is larger than the order
topologyv.

The next proposition is an immediate consequence of 2.1, 1.2 and the
definitions involved.

2.2. PROPOSITION. Let X be a totally ordered topological space and let
(Y, x) be an order compactification of X. Then the order of Y is fotal, the
topology of Y is the order topology and (Y, k) is a Nachbin compactification.

This proposition should be contrasted with the following consequence
of 1.6:
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Let X be an ordered topological space whose order is equality and let
(Y, x) be an order compactification of X. Then (Y, «) is a Nachbin compactifi-
cation iff the order of Y is equality.

Let X be an ordered topological space. A subset A of X is said to be
increasing (resp. decreasing) if x € A and x < y (resp. y =. x) imply y ¢ 4.
Clearly, the set of increasing subsets of X and the set of decreasing subsets
of X are closed under arbitrary unions and intersections. For 4 C X we shall
denote by ¢/ (4) (resp. cly(A)) the intersection of all closed increasing
(resp. decreasing) subsets of X which contain 4. For xe X, c/,({x})
{y:x <{y}and c/y({x}) = {y: y << x}. X is called a normally ordered topological
space if whenever F; and F, are disjoint closed subsets of X such that F, is
increasing and F, is decreasing, there are disjoint open sets U, and U, such
that U, is increasing and contains £ and U, is decreasing and contains F, .
A subset 4 of X is said to be convex if x, ye A and x = z < yimply z ¢ A.
X is said to be a locally convex ordered topological space if for every xe X
and every neighborhood U of X there exists a convex neighborhood of x
which is contained in U. It follows from 1.4 that X is a locally convex ordered
topological space if X is a completely regular ordered topological space.
The converse is obviously false in general (take, for example, the order of X
to be equality). We shall see, however, that it is true if the order of X is total.

2.3. LemMmA, A totally ordered topological space is a normalfly ordered
topological space.

Proof. Let F; and F, be disjoint closed subsets of X such that F| is
increasing and F, is decreasing. If F; U F, == X, then both F| and F, are open.
Ifthereexistsan x € X ~ (F; U Fy), then 7 C{y: x < yand F, C{y: v < x].
By 2.1 we are done.

2.4. PROPOSITION. Let X be a totally ordered topological space. Then X is
a completely regular ordered topological space iff it is a locally convex ordered
topological space.

Proof. only if. See the remark preceding 2.3.

if. Let xe X and let U be an open neighborhood of x. Let }" be an open
convex neighborhood of x which is contained in U and set 4 = (X ~ V)N
ci({x}) and B = (X ~ V)N cly{x}). 4 is a closed increasing subset of X
disjoint from ¢/4({x}). By 2.3 and [6, p. 30] there exists ge BCI(X)=3 1, <
g < lyaa ey - Likewise, B is a closed decreasing subset of X disjoint from
cl{{x}) and so there exists f'€¢ BCI(X)> 1., () < f < lx.5.1tfollows that
Iy <Al —g) < Lyuum < 1y

Now let x and y be in X such that y << x. Then c/,({x}) and c/,({y}) are
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disjoint and as before there exists /& BCI(X)3 1, (1) < f = Lyect (b - In
particular, f() = 0 << 1 = f(x).

2.5. LEMMA. Let X be a totally ordered topological space. Then for any
nonempty subset C of X the maps ¢c , Yot BCI(X) — R defined by

Pclf) = inf f[C] ,
,  JeBCIX),
pe(f) = sup f[C]

are additive and Rt-homogeneous, preserve the lattice operations, and preserve
the constants.

Proof. That ¢ and . are R*-homogeneous and preserve the constants,
is clear; that they are additive and preserve the lattice operations, follows
from the fact that for any fand g in BCI(X) and any two points x and y of C,
say x = y. f(x) O g(x) < f(x) O g(y) < f(y) O g(y) where [ is any of .

vV, A.

2.6. DErINITION. Let X be a totally ordered topological space. We shall
denote by I'(X) the set of all subsets C of X which have the properties

o CCLX,
C is closed, open and increasing,
C has no infimum in X,

We note that the last property is equivalent to

C has no smallest element and X ~ C has no largest element.

2.7. THEOREM. Let X be a completely regular totally ordered topological
space, let K be a compatible closed lattice cone on X and let y be a subset of
I(x).

(1) K = {fe BCI(X):inf f[C] << sup f[X ~ Clforall Ce I'(X) ~ yx}
where yi = {CeI'(X): 1o € K}.1

(i) K, ={fe BCI(X): inf f[C] <. supf[X ~ Clforall Ce I'(X) ~ v}
is a compatible closed lattice cone on X and y = {Cc I'(X): o€ K}.

Proof.
(i) If Cel(X)~ygx, then lo¢ K and so (see Footnote 1)

I Note the trivial fact that for any lattice cone K on any set X, given two nonempty
subsets 4 and B of X, inf f[A] > sup f[B] for some f € K iff there exists f€ K such that
14 < f< ly.op; in particular, if B = X ~ A, inf f{4] > sup f[X ~ A] for some fe K
iff 14€K.

640/13/1-5
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inf f[C] << supf[X ~ C] for all fe K. Thus KC{fe BCI(X):inff[C] -
sup f[X ~ C] for all Ce I'(X) ~ v

To prove the converse inclusion, let e BCI(X) be such that inf f[C]
supf[X ~ C]forall CeI'(X) ~ yi. By [3, 4.1(i)] f belongs to K if for any
two nonempty subsets 4 and B of X such that inf f[A4] = sup f[B], there
exists a g € K such that inf g[A] = sup g[B]. So, let A and B be two such sets.
Clearly c/{A) N cl(B) == =.1f

el(A) = X ~cl(B) and  cl(A)e I(X).
then Lo € K If
not(cl{A) == X ~ clyB) and cl(A) € I'(X)),
then either
Ix e X ~ cly(B) > cl{A) C cl({x}), (n

or

dx e X ~ cl(A) 3 cly(B) C ely({x}) (2)

(if for every x € X ~ cl(B), there exists y € ¢/,(4) such that y << x, then
cl(A) = X ~ cly(B) and cl(A) has no smallest element, and so ¢ly(B) has
a largest element x). If (1) holds, there exist (observe that K is compatible)
gre Kand g, e —Ksuchthat 1,y << gy A gy = lxiaym - Since x < y for all
vecd(Ad), g is 1 oncl(A). Since y << x forall y € cly(B), g, is | on c/,(B) and
50 g, is 0 on ¢l B). Thus inf g;[A] = 1 > 0 —= sup g,[B}. The argument in
the case that (2) holds is analogous. This completes the proof of (i).

(i) By 2.5 K, is a closed lattice cone on X and we show next that
y ={Cel'(X):1.eK,}. Let Cel(X). Clearly, Cey if 1.eK,. If
conversely, C ey, then I.€ K,: 1€ BCI(X) and for any C' e ['(X) ~ .
inf 1[C"] - 1 = sup 1o[X ~ C'1if C ~ C’ is nonempty and inf 1 [C'] —
0 =sup I [X ~ C']if C'" ~ Cis nonempty. Thus it remains to show that K,
is compatible. To do so, it is obviously sufficient to show that the closed
lattice cone

K. = {fe BCI(X): inf f[C] < sup f[X ~ C]for all Ce I'(X)},

is compatible and this, in turn, will be shown if we can exhibit an order
compactification (¥, «) of X with the property that K. contains the closed
lattice cone associated with (Y, «).2 We proceed to construct (Y, «). Set

2 We shall see later (2.8) that this order compactitication is a smallest order compacti-
fication of X.
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% == {CC X: C is closed, open and increasing and either C has no smallest
element or X ~ C has no largest element} (observe that % contains both &
and X) and let Y, be the disjoint union of X and . It is straightforward
to verify that the definition

C <L ifft cCc, C,C'c¥,
< C iff xeC, xeX, Ce¥,
C=<x i xeX~C, xelX, Ce%,

extends the total order of X to a total order of ¥, . That the order topology
of Y, is compact, is a mildly intricate exercise if one uses the well-known fact
that the order topology of any totally ordered set is compact if (and only if)
every subset has a supremum. Finally, 1t is easy to see that the inclusion of X
in ¥, is a topological (and order) embedding. Thus, the closure Y of X in ¥,
(Y does not contain & or X according as X has a smallest element or a
largest element) together with the inclusion map is an order compactification
of X and, obviously, the closed lattice cone associated with this order
compactification is contained in K .

Let X be a completely regular totally ordered topological space. By 2.7
the map v — K, is a preorder isomorphism of the power set of I'(X) onto the
set of compatible lattice cones on X, both preordered by inclusion. By 1.5 the
latter set is (modulo equivalence) isomorphic with the preordered sct of all
order compactifications of X. Thus the following two corollaries are obvious.

2.8. COROLLARY. A completely regular totally ordered topological space
has a smallest order compactification (e.g., the one constructed in the proof of
2.7(in).

This corollary should be contrasted with the following weli-known result of
P. Alexandroft [1] and S. Fomin [4]:

Let X be an ordered topological space whose order is equality. Then X has
a smallest Nachbin compactification iff its topology is locally compact and
a Nachbin compactification (Y, «) of X is a smallest Nachbin compactification
ifT ¥ ~ «[X] has at most one point.

2.9. COROLLARY. Let X be a completely regular totally ordered topological
space. Then X has a (up to equivalence) unique order compactification iff
I(X) = &, ie., every nonempty and proper subset of X which is closed, open
and increasing, has an infimum in X.

This corollary should be contrasted with the following result of
E. Hewitt [5]: Let X be a completely regular ordered topological space whose
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order is equality. Then X has a (up to equivalence) unique Nachbin compacti-
fication iff of any two completely separated closed subsets of X one is compact.

2.10. PROPOSITION.  Let X be a completely regular totally ordered
space and let v be a subset of I'(X). Let K be the compatible closed lattice cone
on X corresponding to v by 2.7(it) and let (Y, «) be the order compactification
of X corresponding to K by 1.5(iii). Then for ye Y ~ «[X]. C - {x e X: y(f)
f(x) for all fe K} is a closed, open and increasing subset of X which has at least
one of the properties

C is nonempty and has no smallest element and
w(f) = inf f{C}  forall feKk, (1)
and

X ~ C is nonempty and has no largest element and

Wf) = supfIC ~ X] forall feKk, (2)

and has both iff it belongs to I'(X) ~ .

Proof. C is clearly closed and increasing. Since C == {x ¢ X: y(f) < f(x)
for all fe K}, C is also open. Now let {x;}., be a net in X such that the net
{r(x)};e; converges to p. One of I. —={iclx,eC} and Iy . ==
{iel:x; e X ~ C} is cofinal in /. If /. is cofinal in [, then C is nonempty and
has no smallest element. That {x(x;)};c,. converges to y means just that
{f (x)}ier, converges to y(f)forall fe Kand this implies that y(f) = inf f[C]
for all f€ K. Thus C has the property (1). Likewise, if 7,.. is cofinal in /1,
C has the property (2).

If C has both properties, then C e I'(X) and C ¢ y by 2.7(ii). Conversely, if
C e I'(X) ~ vy, then, by the definition of K, inf f[C] <= sup f[X ~ C] for all
fe K and so (observe that always inf f/[C] 7> y(f) = supf[X ~ C] for all
feKyinf f[C] - y(f) = sup f[X ~ C] for all fe K. The proof is complete.

Observing 2.5, it is an immediate consequence of 2.10 that, under the
assumptions of 2.10, the convex subsets of Y which are contained in
Y ~ k[X] and have more than one element are precisely the two-point sets
{@c » Py~c) for C € y where ¢ and iy are as in 2.5. Thus we have another
corollary.

2.11. CoroOLLARY. Let X be a completely regular totally ordered topological
space. Then X has a (up to equivalence) unique order compactification iff for
a largest order compactification (Y, k) of X, every convex subset of Y which is
contained in Y ~ w«[X] has at most one point.

This corollary should be contrasted with another result of E. Hewitt [5]:
Let X be a completely regular ordered topological space whose order is
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equality. Then X has a (up to equivalence) unique Nachbin compactification
iff for a largest Nachbin compactification (Y, x) of X, ¥ ~ «[X] has at most
one point.
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